apitech Model # 15313

Nuclear Event Detector (NED) Data Sheet

A Nuclear Event Detector (NED) is an essential element of any nuclear hardened electronic system hardware. It provides sensing and response signals to ionizing radiation pulses emitted during nuclear events.

Under such conditions, the NED, with a customer programmed threshold (external resistor) will provide two outputs:

- A timed output (set by an external capacitor)
- A latched output with electrical reset

The module is supplied in a 14 pin military standard hermetic package that is fully tested and compliant with military requirements. It is capable of detecting short duration pulses and has a number of features including a test input to verify functional health.

Features

- Detection of ionising radiation above a pre-set level
- Ability to set a trigger threshold by a single external resistor (RTH)
- Provision of a fast pulsed detected output (NED)
- Ability to set the NED output pulse duration by a single external capacitor (CA to CB)
- Provision of a fast latched flag output ($\overline{\text{NEF}}$)
- Provision of complementary flag reset inputs (FR and FR)
- Provision of a separate supply for the main electronics (VH)
- Provision of a separate bias supply for the detection diode (VB)
- Provision of a separate load supply for the output drive transistors (VL)
- Operation within specification across the military temperature range (-55°C to +125°C)

Maximum Ratings

Parameter	Limit
Voltage at pins 6, 11, 12 and 14 w.r.t. pin 7	7.0 V
Voltage at pin 1 w.r.t. pin 7	20 V
Voltage at pin 8 w.r.t. pin 7	5.5 V
Storage temperature range	-65°C < Ta < +150°C
Ionising radiation dose rate (operate through and survive)	>1E8 Gy(Si)/s
Ionising total dose	>100 Gy(Si)
Neutron fluence	>1E13 n/cm ²

Table 1 Pin Description

Pin	Name	Function	Description	
1	VL	SUPPLY	Output pull-up supply	
2	NED	OUTPUT	Nuclear Event Detector pulsed output	
3	NC3	n/c		
4	C _B	INPUT	Timing capacitor (negative)	
5	C _A	OUTPUT	Timing capacitor (positive)	
6	TEST	INPUT	Built in Test input	
7	GND	GROUND	Device supply ground and case connection	
8	V _B	SUPPLY	Device detector bias supply	
9	R _{TH}	INPUT	Threshold set input	
10	NC10	n/c		
11	NFR	INPUT	Flag reset inverse input	
12	FR	INPUT	Flag reset input	
13	NEF	OUTPUT	Nuclear Event Flag output	
14	V _H	SUPPLY	Device Supply	

TRIGGER THRESHOLD SETTING

The NED has provision for setting a nominal trigger threshold between 1E3 & 1E6 Gy(Si)/s using a single external resistor. The threshold is a product of the resistor value (Fig. 2) and radiation pulse width (Fig. 3). The following equation can be used :-

$$DR = \frac{2.18E7}{Rth/(1 - e^{\left(-\frac{125tp}{Rth}\right)})}$$

DR= radiation pulse amplitude in Gy/s Rth = resistor value tp = rectangular radiation pulse width in ns 1 Gy/s = 100 rad/s

NED PULSE DURATION SETTING

The duration of the $\overline{\text{NED}}$ pulse width is set by an external capacitor connected between the Ca and Cb pins. The nominal calculation is 20us/nF.

The pulse width should be set long enough to protect the system from the initial event until radiation has fallen to safe levels at which the system can operate.

TABLE 2. Electrical performance characteristics

Parameter	Symbol	Conditions -55°C 2 T _A 22+125°C	Limits			Unit
		unless otherwise specified	Min	Тур	Max	
Standby Supply Current	Ι _Η	$\label{eq:supply voltage V_H = 5.5V, TEST Input = 0.00V to 0.05V, \\ \mbox{NFR Input = 4.5V to 5.5V, FR Input = 0.00V to 0.05V,} \\ \hline \mbox{NED and } \hline \mbox{NEF outputs high (>4.5V)} \\ \end{tabular}$			2.0	mA
Flag Set Supply Current	I _H	V_{H} = 5.5V, $\overline{\text{NED}}$ output >4.5V, $\overline{\text{NEF}}$ output <0.5V			6.0	mA
Operational Supply Current	I _H	V_{H} = 5.5V, $\overline{\text{NED}}$ and $\overline{\text{NEF}}$ outputs <0.5V			15.0	mA
Output Leakage Current	IL.	VL = 20.0V, $\overline{\text{NED}}$ and $\overline{\text{NEF}}$ outputs >4.5V			100	uA
Detector Leakage Current	IB	Detector bias voltage V _B = 5.5V, $\overline{\text{NED}}$ output >4.5V, $\overline{\text{NEF}}$ output <0.5V			5.0	uA
Detector Forward Voltage	V _F	Forward current, I _{TH} = 10mA	0.25		1.0	V
FR Input Current	I _{FR}	Flag reset voltage V_{FR} = 0.7V, R_{TH} not connected (note 6)		0.5	1.0	mA
	I _{FR}	Flag reset voltage V_{FR} = 3.0V, R_{TH} not connected (note 6)		2.3	3.0	mA
FR Switching Voltage	V _{FRSW}	R _{TH} not connected (note 6)	0.7	2.1	3.0	V
FR Input Current	I _{NFR}	$\overline{\mathrm{FR}}$ voltage V _{NFR} = 0.7V, R _{TH} not connected (note 6)		-0.5	-3.0	mA
	I _{NFR}	$\overline{\mathrm{FR}}$ voltage V _{NFR} = 4.0V, R _{TH} not connected (note 6)		-0.1	-1.0	mA
FR Switching Voltage	V _{NFRSW}	R _{TH} not connected (note 6)	0.7	1.6	2.0	V
TEST Input Current	I _{TEST}	TEST voltage V _{TEST} = 0.7V		0.5	1.0	mA
	I _{TEST}	TEST voltage V _{TEST} = 4.0V		3.3	4.0	mA
TEST Switching Voltage	V _{TESTSW}		0.7	2.1	3.0	V
NED Output Voltage	V _{DOH}	$V_L = 20V$, $\overline{\text{NED}}$ output current $I_0 = -100\mathbb{P}A$	18.5			V
	V _{DOL}	$\overline{\text{NED}}$ output current I _{OL} = 10mA			0.6	V
	V _{DOL}	$\overline{\text{NED}}$ output current I _{OL} = 20mA			0.7	V
NEF Output Voltage	V _{FOH}	$V_L = 20V$, $\overline{\text{NEF}}$ output current $I_O = -100\mathbb{P}A$	18.5			V
	V _{FOL}	$\overline{\text{NEF}}$ output current I _{OL} = 10mA			0.6	V
	V _{FOL}	$\overline{\text{NEF}}$ output current I _{OL} = 20mA			0.7	V
TEST Input pulse width	t _{TEST}	V _{TEST} = 0V to 4.0V	250			ns
TEST to $\overline{\text{NED}}$ or $\overline{\text{NEF}}$ delay	to	V _{TEST} = 0V to 4.0V duration 10⊡s		5	10	us
FR Input pulse width	t _{FR}	$V_{FR} = 0V$ to 4.0V	250			ns
FR Input to $\overline{\mathrm{NEF}}$ Delay	tr	V _{FR} = 0V to 4.0V duration 12s		0.2	1.0	us
FR Input pulse width	t _{NFR}	V _{NFR} = 5.0V to 0.7V	500			ns
\overline{FR} Input to \overline{NEF} delay	ts	V _{NFR} = 5.0V to 0.7V duration 1 ² / ₁ s		0.25	1.0	₽S
NED Output Delay	tt	V_{RTH} = 0V to 5.0V duration 100ns, pull-up resistor =220 Ω		25	50	ns
NEF Output Delay	tu	V_{RTH} = 0V to 5.0V duration 100ns, pull-up resistor =220 Ω		50	200	ns
$\overline{\text{NED}}$ output pulse width	t _{NED}	Supply voltage V_H = 4.5V to 5.5V, pulse duration timed from negative edge of TEST input	10	20	30	us/nF
NED Output Pulse Width	t _{NED}	Supply voltage V _H = 4.95V to 5.05V	13	20	27	⊡s/nF

Footnotes for Table 2:

- 1. All voltage measurements are made with respect to pin 7 (GND) unless otherwise stated.
- 2. The definition of low and high voltage levels are: $V_{OL} < 0.5V$, $V_{OH} > 4.5V$ unless otherwise stated.

Т

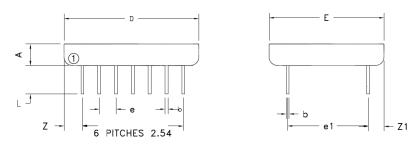
- 3. V_L and V_H = 4.5V to 5.5V unless otherwise stated.
- 4. V_{B} , \overline{NED} and \overline{NEF} are not connected unless otherwise stated.
- 5. $C_T = 47nF + /-10\%$ and connected to pins 4 and 5 unless otherwise stated.
- 6. $R_{TH} = 180^{\circ} + / -2^{\circ}$ connected between pin 9 (RTH) and pin 7 (GND) unless otherwise stated.
- 7. In standby mode (no nuclear event detected) both NED and NEF outputs and NFR input will be in the 'high' state and TEST and FR input will be in the 'low' state.

TABLE 3. Truth Table

			Time -	t = 0s	t = 0s	After	After	After	After	After
			?			to	tq	tp	tp	tr
STATUS	TEST	FR	FR	NED	NEF	NED	NEF	NED	NEF	NEF
Standby	L	Н	L	Н	Н	Н	Н	Н	Н	Н
Nuclear event detection (or simulation)	Н	Н	L	Н	Н	L	Ĺ	Н	L	Н
After nuclear event detection (or simulation)	L	Н	L	L	L	L	L	Н	L	Н
Reset by FR input	L	Н	Н	Н	L	N/A	N/A	N/A	N/A	Н
Reset by NFR input	L	L	L	Н	L	N/A	N/A	N/A	N/A	Н

Footnotes for Table 2:

- 1. Time t_0 is the delay between the TEST input voltage rising to 90% of its peak voltage and the NED output falling to 10% of its peak voltage.
- 2. Time t_p is the width of the pulse from the NED output measured between the falling and rising edges at 50% of the amplitude.
- Time t_q is the delay between the TEST input voltage rising to 90% of its peak voltage and the NEF output falling to 10% of its peak voltage.
- 4. Time t_r is the delay between the FR input voltage rising to 90% of its peak voltage and the NEF output rising to 90% of its peak voltage.
- Time t_s is the delay between the NFR input voltage falling to 10% of its peak voltage and the NEF output rising to 90% of its peak voltage.
- 6. Outputs inactive during power up provided V_H rises at < 5000 V/s (5 V/ms)


PART ORDERING INFORMATION

Part Number	Feature	Option
5962-1022001HXC	14 pin DIL as per DLA SMD 5962-10220	gold plate finish leads
5962-1022001HXA	14 pin DIL as per DLA SMD 5962-10220	hot solder dip finish leads
15313	14 pin DIL case outline	gold plate finish leads
15313A	14 pin DIL case outline	hot solder dip finish leads
14907	14 pin flatpack case outline	gold plate finish leads
14907A	14 pin flatpack case outline	hot solder dip finish leads

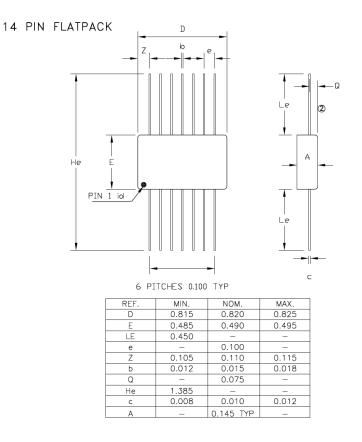


Figure 2. DIL Case Outline

DEE	DI	MENSIONS	mm	DIMENSIONS in			
REF	MIN	NOM	MAX	MIN	МАХ		
D	20.06	20.19	20.32	0.790	0.795	0.800	
Е	12.44	12.57	12.70	0.490	0.495	0.500	
А	_	3.56	3.69	_	0.140	0.145	
L	4.95	5.08	5.21	0.195	0.200	0.205	
b	-	0.46	-	_	0.018	-	
е	-	2.54	-	_	0.100	_	
e1	_	7.62	-	_	0.300	_	
Z	-	2.46	-	-	0.097	-	
Z1	-	2.46	-	_	0.097	-	

Figure 3. FP Case Outline

