APITech offers customizable solutions when more gain, higher power, better linearity or a different bias configuration are desired. APITech engineers pride themselves on designing the best performing amplifiers the industry has to offer.
The APITech Family of Business

Microwave Components & Systems Business

- Amplifiers, Mixers, Switches, Oscillators & Sources
- RF/Microwave Filters, Diplexers & Multiplexers, Integrated Multifunction Modules
- Thin Film Substrates, Hybrid Assembly Services

EMI Filter & Components Business

- EMI Surge Suppression Components & Modules
- Power Line Filters & Power Entry Modules
- Interconnect Devices
- Terminal Blocks & Passive Components

Microwave Components & Systems Business

- Power Management & Distribution Systems
- AC & DC Power Strips
- Power Monitoring Equipment: Environmental, Electrical, Security, Mechanical

Sensors & Controls Business

- Potentiometers, Temp Sensing Probes, Surge Current Limiters

Component Overview

Leading designer and manufacturer of RF components and integrated microwave assemblies (IMAs)

Products Including

- Amplifiers (Low Phase Noise, LNAs, High Dynamic Range, Power)
 1 MHz to 18 GHz
- Mixers from DC to 26 GHz
- Voltage Control Oscillators (VCOs) 25 MHz to 18 GHz
- Dielectric Resonator Oscillators (DROs) 2 GHz to 20 GHz
- RF & Microwave Filters
- Switched Filter Banks, Integrated Products
- Rotary Joints, Phase Shifters, Couplers

Products Including

- Military Electronics, Avionics, Aerospace, and Commercial

30 Years Of Design & Manufacturing Experience

- Over 600 Microwave employees (75 Engineers)
- Access to lower cost manufacturing
 (APITech commercial RF facilities in Mexico & China)

A | Columbia, MD
 Acquired July 2002 (FSY)
B | Delmar, DE
 Acquired February 2004 (Salisbury Engineering)
C | Palm Bay, FL
 Acquired October 2004 (Q-bit)
D | Philadelphia, PA
 Acquired February 2005 (Amplifonix)
E | State College, PA
 Acquired January 2007 (EMF Systems)
F | Marlborough, MA
 Acquired September 2008 (Satcon-Film MicroElectronics)
 Acquired December 2009 (IDT-MicroNetworks)
G | Auburn, NY
 Acquired December 2009 (IDT-Creative Electric)
H | Nashua, NH
 Acquired XXXXXXX 2010 (Sage Electronics)
Global Design & Manufacturing Locations

Substrate Manufacturing
• In-house thin & thick film capability

Electronics Production
• Precision hybrid, CCA & MIC capability

Mechanical Production
• Precision machined parts

Integration & Testing
• Full RF/Microwave and environmental testing

Documented Procedures
• ISO 9001:2000 Certified

Unified Design Tools
• Genesys, Solidworks

Personnel
• Over 600 microwave employees
• Over 75 engineers (and hiring)
Juarez Operation

APITech Low Cost Manufacturing Center:
MEXICO
Dongguan Operation

APITech Low Cost Manufacturing Center: CHINA

Domestic Airports

- Shenzhen
- Guangzhou (also Intl.)

Product Line Overview

Hybrid Components, Mixers & Advanced Technologies

- In-house thin & thick film capability
- 30 year heritage design database
- Quick turn prototypes (2-4 days)
- Complete testing & ESS capability
- Rapid military to low cost conversion
- Modular assemblies

Filter Components & Integrated Filter Assemblies

- Complete filter solutions
- In-house machining
- Complete testing & ESS capability
- 20 year heritage design database
- Focused design centers for quick turn prototypes (2-4 weeks)

Frequency Sources & Integrated Microwave Assemblies

- 80% critical component content
- In-house development of ATE
- 25 IMA engineers with 22 years average experience
Amplifiers | Packages—Hybrid

Hermetically Sealed
- 100% testing over temperature extremes
- Gross and fine leak
- Constant acceleration up to 10,000g
- 160 hour burn-in at 125°C

Ceramic Surface Mount (QBH-8000 series)
- Alumina substrate and cover
- Thick film metallization
- Utilize both chip & wire, and SMT components
- 100% testing at 125°C

Generation II (QBH-2000 series)
- Soft substrate (PTFE) designs
- Strictly surface mount components
- Assembled with Sn96

Standard Commercial
- Developed by large manufacturers (i.e. Motorola, Philips)

Amplifiers | Performance

Gain Blocks
- Frequency Range: 1 MHz to 18 GHz
- RF/IF drivers and LO buffer amps in Integrated Microwave Assemblies (IMAs)
- Transistor die - extended operating temperature range, -55°C to +125°C
- Power feedback below 1.5 GHz - high reverse isolation reducing load sensitivity (QBH-1401)
- Frequency selective matching circuits reduces “out-of-band” gain
- Improved efficiency with autotransformers and current sharing
- Low phase noise
- LCA package for cost sensitive programs (< $35)

Amplifiers | Hi-Reverse Isolation
- Palm Day (previous Q-bit) Hi-Reverse Isolation designs are typically 10-15 dB better than general RF amplifiers
- Excellent in Synthesizers, Exciters and Oscillator Assemblies
- Often saves customer the price and real estate of an isolator
Amplifiers | Low Noise Performance

Low Noise Amplifiers

- 10 MHz to 6000 MHz
- Low frequency (<500 MHz) designs generally use silicon bipolar transistors and incorporate the low loss benefits of power feedback to adjust gain and VSWR
- High frequency (>500 MHz) designs based on GaAs MESFET and PHEMT technology
- Integrate high Q components (i.e. air coils, low ESR caps)
- Discrete first stage followed by MMICs

QBH-920

- 30-200 MHz
- 1.4 dB typical noise figure
- 8.0 dB gain
- 3rd/2nd order IP: 42/59 dBm
- +15.0 Vdc/29 mA

QBH-2001

- 1200-1600 MHz
- 0.85 dB noise figure
- 22.0 dB gain
- +3.0 dBm P1dB
- +15.0 Vdc/40 mA

Amplifiers | Broadband Performance

Broadband

- Combine low Q resistive feedback networks, voltage shunt and current series, to establish gain window and input/output VSWR
- Use discrete Silicon Bipolar or GaAs MESFET/PHEMT devices in die form to tightly control the parasitic inductance of wire bonds
Amplifiers | Low Noise Amplifiers

QB-914

- 4.0-8.0 GHz
- Gain: 32 dB typical
- NF: 1.8 dB
- P1dB: 17 dBm
- 3rd order IP: 23 dBm
- +12 Vdc/125 mA

Amplifiers | High Dynamic Range Performance

High Dynamic Range

- Relatively low noise with excellent linearity (low distortion)
- Bias medium power transistors (<4 watts) at 10-20% loss to achieve an optimum tradeoff between noise figure and distortion
- Low frequency (<200 MHz) designs - push-pull configuration using Si bipolar devices in a patented feedback topology (QB-101)
- Used as the input stage in multi-carrier receivers. Allows reception of large input signals without distorting the amplifier output.

QB-101

- IF Amplifier
- 2-70 MHz
- 22.0 dB gain
- 4.0 dB Noise Figure
- 3rd/2nd Order
- Output IP3 +54 dBm
- Output IP2 +110 dBm
- +24 Vdc/400 mA

QBH-2001

- Military/Space
- 3.0-4.0 GHz
- 15.0 dB gain
- 1.7 dB Noise Figure
- +36.0 dBm 3rd Order OIP
- Output IP3 +54 dBm
- Output IP2 +110 dBm
- +24 Vdc/400 mA
Resistive Feedback

- Ultra wideband with performance over multiple octaves
- Reverse isolation is typically 6 dB higher than the gain
- Easy to integrate making it ideal for multiple gain stages in a small package

Resistive Feedback

- Use twisted-wire transformers, printed 3 dB hybrids, or Lange couplers to combine parallel stages, 90° out of phase
- Maintain excellent input/output VSWR while intentionally mismatching the RF transistor to optimize noise figure, output power, and distortion
- Redundant design - if a branch fails, noise figure increases 3 dB and gain drops about 6 dB

Push-Pull

- Baluns (balanced to unbalanced) connect parallel cascode stages 180° out of phase
- Broadband with excellent gain stability and linearity, especially the 2nd Order OIP. Configuration theoretically cancels even-harmonic distortion products.

Ultra Low Phase Noise

- We achieve **guaranteed** (100% tested) performance using high performance silicon bipolar transistors in unique circuits up to 2 GHz

Benefits

- Improves error rate in telemetry apps
- Improved sub-clutter visibility in radar apps
- Better signal to noise ratio in receivers

TM9119PM

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>-165</td>
<td>-160 dBc/Hz</td>
</tr>
<tr>
<td>1 kHz</td>
<td>-172</td>
<td>-167 dBc/Hz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>-177</td>
<td>-172 dBc/Hz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>-179</td>
<td>-174 dBc/Hz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>-180</td>
<td>-175 dBc/Hz</td>
</tr>
</tbody>
</table>

APITech is the **only hybrid amp manufacturer** that guarantees low-phase noise performance on it’s standard line of parts. We’ve invested heavily in high-performance test equipment including Agilent network analyzers, low-phase noise signal generators, an enhanced Agilent E5500 phase noise measurement system, and additional in-house environmental test equipment.
Amplifiers | Ultra Low Phase Noise Performance

Ultra Low Phase Noise

- **Guaranteed performance** (100% lot testing) up to 6.0 GHz

Frequency <2 GHz

- Use silicon **bipolar transistors**. Combine multiple die with high ft in parallel to achieve bandwidth and power

![Graph](image)

600 MHz @ Pout = +24 dBm

Amplifiers | Ceramic Lower Cost Amplifiers

Ceramic Surface Mount Hybrid

- Units shipped in feeder tubes, or tape & reel for automated PCB assembly
- Able to convert designs in hermetic packages into cost-effective surface mount solutions for the customer without performance degradation
- Excellent thermal characteristics - RF transistor is eutectically attached to a copper carrier, which is soldered directly to the package heat spreader

PCB Materials: Thin Film

- PCB Materials: Thin Film
- Purchase metallized substrates - Alumina (99.5%), BeO and AIN
- State College facility capable of etching circuit patterns with an accuracy of 2.0 mil wide lines and 2.0 mil spacing

PCB Materials: Thick Film

- Purchase Alumina (96%) substrates with machined vias and/or slots for transistor carriers
- Screen print and fire the circuit pattern with the following pastes:
 - Gold - wire bonding
 - Palladium silver - solder chip components, thermocompression (TC) welding
 - Resistive pastes - bias networks/attenuators
- Thick film copper available for high volume applications
Amplifiers | Generation II Package

Generation II Product

- Packaged in tape & reel for pick and place applications
- Completely automated assembly with a single reflow to attach components and cover
- No tuning / alignment
- Metal cover provides circuit isolation
- LNA and lower power (P1dB < 26 dBm) designs
- Intended for high volume applications; price < $15

LCA assembled with high volume processes

<table>
<thead>
<tr>
<th>Customer’s needs</th>
<th>APITech’s LCA</th>
<th>MMICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never Obsolete</td>
<td>✓</td>
<td>End-of-life / Next generation forces system redesign.</td>
</tr>
<tr>
<td>True 50 Ohm Match</td>
<td>✓</td>
<td>Additional components means additional design time and Real Estate.</td>
</tr>
<tr>
<td>Superior Phase Noise</td>
<td>✓</td>
<td>Not tested or guaranteed in production.</td>
</tr>
<tr>
<td>Guaranteed Performance</td>
<td>✓</td>
<td>Always Typical Values / Graphs.</td>
</tr>
<tr>
<td>-55°C to +85°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No External Components Needed</td>
<td></td>
<td>Blocking caps are just the beginning…</td>
</tr>
<tr>
<td>Low Cost</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Frequencies to 4000 MHz
- Output power to 4 watts
- No external biasing or RF matching circuits required
- Available in tape & reel

Amplifiers | Ceramic Lower Cost Amplifiers

LCA assembled with high volume processes

- Extensive use of fixtures
 - Screen print solder paste in the array
 - Align and reflow backside heat spreader in the array
 - Eutectic attach transistor in SST (vacuum reflow) using carbon “boats” to align die on copper carrier, 20x20 matrix or larger
 - Automated pick & place of chip components in the array
 - Autobonder

Large Cu/Mo Ground Plate

Amplifiers | Broadband Power Amplifiers

QB-904

- Class AB, 3 stage design
- +24 VDC/900 mA @ Pout
- Balanced architecture for good VSWR
- Combination of PHEMPT and GaN device technologies in die form
- 35 dB gain with 4 watts Pout
Specifications

Parameters (Typical at 25°C)

<table>
<thead>
<tr>
<th>Amplifier Series</th>
<th>QB-904 (4 watt)</th>
<th>QB-910 (1/2 watt)</th>
<th>QB-909 (Medium Gain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range (MHz)</td>
<td>2,000-6,000</td>
<td>2,000-6,000</td>
<td>2,000-6,000</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>35</td>
<td>27</td>
<td>17</td>
</tr>
<tr>
<td>Gain Flatness (dB)</td>
<td>+/- 2.5</td>
<td>+/- 2.0</td>
<td>+/- 1.0</td>
</tr>
<tr>
<td>Power Output (dBm)</td>
<td>+36</td>
<td>+28</td>
<td>+19</td>
</tr>
<tr>
<td>DC Voltage (Vdc)</td>
<td>23-29</td>
<td>23-29</td>
<td>8</td>
</tr>
<tr>
<td>DC Current (mA Quiescent)</td>
<td>285</td>
<td>185</td>
<td>100</td>
</tr>
<tr>
<td>Noise Figure (dB)</td>
<td>8</td>
<td>7</td>
<td>5.5</td>
</tr>
<tr>
<td>RF Input/RF Output Connector</td>
<td>SMA Female or Gold Plated 0.015 pin</td>
<td>SMA Female or Gold Plated 0.015 pin</td>
<td></td>
</tr>
<tr>
<td>DC Input</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amplifiers | Performance

Medium Power

- Frequency range - 1 MHz to 6 GHz
- Hybrids are class A with output powers up to 4 watts @ P1dB
- Connect parallel stages in a push-pull or balanced configuration
 - Design miniature 90° hybrid couplers and baluns - adjust the windings to optimize parameters
 - Topology distributes heat throughout the package
Amplifiers | QB-904 Performance, 4 watts 2-6 GHz

QB-904

- 3 Stage Amplifier with Internal Voltage Regulation
- Class AB Biased for Radar, Jammers, Communications Transmit Applications
- Balanced Output Stage for Good Broadband Output Return Loss
- 4 watts Output Power over 2 to 6 GHz Band
- Filtered Input (18 dB/Octave filter roll-off)
- Latest Gallium Nitride (GaN) device Technology
- 38 dB Small Signal Gain
- Connectorized or Printed Wiring Board Mount (solder attach 0.015" pins)
- Small Size
- Optional Heat Sink Available

![Power Conditioning Diagram]

Amplifiers | QB-904 Performance, 4 watts 2-6 GHz

** Specifications **

<table>
<thead>
<tr>
<th>Parameters (Typical at 25°C)</th>
<th>Typical Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>2.0 to 6.0 GHz</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>38 dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>+/- 3.0 dB</td>
</tr>
<tr>
<td>Input Loss Return</td>
<td>10 dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>12 dB</td>
</tr>
<tr>
<td>Output Power (Psat)</td>
<td>+36 dBm</td>
</tr>
<tr>
<td>DC Voltage (Vdc)</td>
<td>+23 to +29 VDC</td>
</tr>
<tr>
<td>DC Current (mA Quiescent)</td>
<td>285 mA</td>
</tr>
<tr>
<td>Noise Figure (dB)</td>
<td>8 dB</td>
</tr>
<tr>
<td>RF Input/Output Connector</td>
<td>SMA Female or Gold Plated 0.015 pin</td>
</tr>
<tr>
<td>DC Input Connector</td>
<td>SMA Female or Gold Plated 0.015 pin</td>
</tr>
</tbody>
</table>
Amplifiers | QB-910 Performance, 0.5 watts 2-6 GHz

Specifications

<table>
<thead>
<tr>
<th>Parameters (Typical at 25°C)</th>
<th>Typical Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>2.0 to 6.0 GHz</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>27 dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>+/- 2.0 dB</td>
</tr>
<tr>
<td>Input Loss Return</td>
<td>10 dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>8 dB</td>
</tr>
<tr>
<td>Output Power (Psat)</td>
<td>+28 dBm</td>
</tr>
<tr>
<td>DC Voltage (Vdc)</td>
<td>+23 to +29 VDC</td>
</tr>
<tr>
<td>DC Current (mA Quiescent)</td>
<td>185 mA</td>
</tr>
<tr>
<td>Noise Figure (dB)</td>
<td>8 dB</td>
</tr>
<tr>
<td>RF Input/Output Connector</td>
<td>SMA Female or Gold Plated 0.015 pin</td>
</tr>
<tr>
<td>DC Input Connector</td>
<td>SMA Female or Gold Plated 0.015 pin</td>
</tr>
</tbody>
</table>

Frequency Range

- 2.0 to 6.0 GHz
- +/- 2.0 dB
- 10 dB
- 8 dB
- +28 dBm
- +23 to +29 VDC
- 185 mA
- 8 dB
- SMA Female or Gold Plated 0.015 pin
- SMA Female or Gold Plated 0.015 pin

Small Signal Gain

- 27 dB

Gain Flatness

- +/- 2.0 dB

Input Loss Return

- 10 dB

Output Return Loss

- 8 dB

Output Power (Psat)

- +28 dBm

DC Voltage (Vdc)

- +23 to +29 VDC

DC Current (mA Quiescent)

- 185 mA

Noise Figure (dB)

- 8 dB

RF Input/Output Connector

- SMA Female or Gold Plated 0.015 pin

DC Input Connector

- SMA Female or Gold Plated 0.015 pin
Specifications

### Parameters (Typical at 25°C)	Typical Specifications
Frequency Range | 2.0 to 6.0 GHz
Small Signal Gain | 17 dB
Gain Flatness | +/- 1.0 dB
Input Loss Return | 12 dB
Output Return Loss | 12 dB
Output Power (Psat) | +19 dBm
DC Voltage (Vdc) | +8 VDC
DC Current (mA Quiescent) | 100 mA
Noise Figure (dB) | 5.5 dB
RF Input/Output Connector | SMA Female or Gold Plated 0.015 pin
DC Input Connector | SMA Female or Gold Plated 0.015 pin

- Single stage amplifier
- Class A biased for radar, jammers, communications transmit applications
- P1dB +18 dBm over 2-6 GHz band
- 18 dB small signal gain
- Connectorized or printed wiring board mount (solder attach 0.015” pins)
- Small size, hermetically sealed
Amplifiers | High Frequency Integrated Amplifiers

Generation II Product

- Frequency 2-18 GHz (4 phase tracked amplifier assemblies)
- Consists of...
 - 2 stage amplifier (4 channels)
 - Broadband detector
 - Gain compensator
 - Digital fault circuits
 - Power conditioning
 - Complex packaging
Quality & Reliability

MIL-PRF-38534 Product Screening and qualification capability

- Device screening and groups A, B, C, and D qualification (when required by order)
- Environment testing per MIL-STD-883 test methods

Other specifications guidelines

- J-STD-001 Class 3 and IPC-A-610, for eutectic attach and general soldering processes
- IPC-7711 and IPC-7721, for rework and authorized repair operations

Quality assurance programs

- Calibration recall program for test and measurement equipment
- Facility ESD program
- Failure analysis and corrective action system
- Internal ISO audit program
- Operator training program

Design & Development Process

1. Specification Development
2. Simulation & Design
3. Prototyping
4. Testing
5. Manufacturing
6. Logistics
Who We Are

Value-added Integration from Components to Subsystem Solutions

APITech provides rugged, reliable, and efficient subsystems, assemblies, and components for use in the most mission critical defense and military applications, supporting government programs throughout the world. With diverse program experience and preferred supplier status with some of the industry’s top premier contractors, our precision-engineered MIL-grade products are ideal for applications where uncompromised reliability and uninterrupted performance is required. APITech is the Electromagnetic Spectrum Innovator at Tier 2.5-4 in the supply chain.

The Electromagnetic Spectrum Innovator

APITech is an innovative designer and manufacturer of high performance systems, subsystems, assemblies and components for technically demanding RF, microwave, millimeter wave, electromagnetic, power, and security applications.

A high reliability technology pioneer with over 70 years of heritage, APITech’s products are used by global defense, industrial, and commercial customers in applications spanning radar, electronic warfare, unmanned systems, missile defense, harsh environments, space, communications, medical, test and instrumentation, and more.

www.apitech.com | 855.294.3800